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Abstract. We show that the interaction of a particle with a directionally solidified interface induces the
onset of morphological instability provided that the particle-interface distance falls below a critical value.
This instability occurs at pulling velocities that are below the threshold for the onset of the Mullins-Sekerka
instability. The expression for the critical distance reveals that this instability is manifested only for certain
combinations of the physical and processing parameters. Its occurence is attributed to the reversal of the
thermal gradient in the melt ahead of the interface and behind the particle.

PACS. 81.30.Fb Solidification – 81.05.Ni Dispersion-, fiber-, and platelet-reinforced metal-based
composites – 81.10.Fq Growth from melts; zone melting and refining

The freezing of a liquid with a dispersed phase takes
place in numerous natural and industrial processes. Some
examples include the formation of ice lenses that result
from the freezing of soil water [1], the freezing of biolog-
ical cell suspensions in a cryopreservation experiment [2],
the decontamination of metallic pollutants from soils [3],
the growth of Y123 superconductors by the undercooling
method [4] and the manufacture of particulate reinforced
metal matrix composites (PMMC) [5]. The properties of
these composite materials are enhanced by the addition
of the dispersed elements.The freezing of a liquid suspen-
sion is associated with the interaction of the constituents
of the dispersed phase with a solidifying interface. The
first systematic study of this interaction was carried out
by Uhlmann et al. [6]. They demonstrated the existence of
a critical value for the growth rate below which the inclu-
sions are pushed by the moving interface, and above which
they are engulfed by the interface and incorporated into
the solid. Consequently, very low growth rates are con-
ducive to particles being pushed by the interface, while
high growth rates are conducive to particle engulfment.

The presence of an inclusion in the melt near a solid-
liquid interface introduces locally a change, albeit small,
in the thermal gradient ahead of the solid front. This, in
turn, introduces a small deformation in the profile of the
interface. The difference in the thermal conductivities of
the melt and particle stands out as the cause for this in-
terfacial deflection [7–10]. Imagine a situation wherein a
solid is growing antiparallel to the direction of the heat
flux and toward an inclusion that is less heat conduct-
ing than the melt in which it is immersed. Then, as the
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Fig. 1. Sketch of a particle of radius a immersed in a melt
near a deformable solid-liquid interface; aH0 is the particle-
interface distance measured from the particle’s center to the
planar solid front, V is the interface growth rate, h∞ is the
gap width that separates the lowest point on the particle from
the planar interface, and R represents the radial coordinate
taken along the planar interface.

width of the gap separating the inclusion from the solid
front decreases, heat becomes more easily evacuated from
the solid phase than from ahead, leading to a local re-
versal of the thermal gradient and, consequently, to the
local destabilization of the interface. As long as the parti-
cle remains pushed, the disturbance grows and propagates
radially with decreasing magnitude.

This hand-waving argument is made more precise in
this paper. The situation considered here is illustrated
schematically in Figure 1. An axisymmetric spherical par-
ticle of radius a is submerged in a binary alloy in such
a way that the distance from its center to the planar
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solid-liquid interface that emerged from the directional so-
lidification of a dilute binary mixture is aH0. We assume
a microgravity environment. The problem is described by
the diffusion of solute equation in the melt and the heat
conduction equations in the melt, solid phase and par-
ticle in a frame that is moving with velocity V in the
upward Z−direction; Z is the vertical coordinate (Z > 0
in the liquid region) and R is the radial coordinate taken
along the planar solid-liquid interface. The diffusion of
solute in the solid phase is neglected. The boundary con-
ditions at the solid-liquid interface account for: (i) cur-
vature and solute undercoolings in the equation describ-
ing the equilibrium temperature, (ii) the heat balance,
and (iii) the conservation of mass. At the particle-melt
boundary, [Z − (a + h∞)]2 + R2 = a2, we impose the zero
mass flux and the continuity of the temperature and heat
flux; h∞ denotes the width of the gap between the particle
and the planar interface. Far away from the solid front, the
imposed thermal gradients in the solid and liquid phases
are G(L) and G(S), respectively, while the concentration
of solute is maintained at C∞. The nondimensionalisation
that we adopt makes use of the particle’s radius a as length
scale [11], a/V , the melting point Tm, the growth rate V ,
and the concentration far away from the front, C∞, as
scales for time, temperature, velocity and concentration,
respectively. We have
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where C is the solute concentration, T is the tempera-
ture, the superscript (q) stands symbolically for parti-
cle (q = P ), solid (q = S) and liquid (q = L), λ(q) =
D/D(q), where D and D(q) are the coefficients of so-
lute and thermal diffusion, respectively, ε = aV/D is the
Peclet number, and ∆r is the Bessel differential opera-
tor, (1/r)∂/∂r(r∂/∂r). The corresponding boundary con-
ditions are as follows: at the solid-liquid interface,

T (S) = T (L) = 1 − σκ + MC, (3)

Svn =
(
k∇T (S) −∇T (L)

)
· ni, (4)

εC(1 − K)vn = −∇C · ni. (5)

At the particle’s surface, (z−H0)2+r2 = 1, the continuity
of temperature and of the heat flux imply,

T (L) = T (P ), (α∇T (P ) −∇T (L)) · nP = 0, (6)

while the zero mass flux condition yields ∇C · nP = 0.
The far field conditions are ∂T (L)/∂z → GL and C = 1 as
z → ∞, and ∂T (S)/∂z → GS as z → −∞. The symbols
that appear in the above equations are defined as follows:
σ = σSL/aL is the surface energy parameter, where σSL

is the interface excess free energy and L is the latent
heat of fusion per unit volume; M = mC∞/Tm, is the

morphological parameter, where m is the liquidus slope;
S = LV a/(Tmk(L)) is the Stefan number; k = k(S)/k(L);
α = k(P )/k(L), where k(q) is the coefficient of thermal
conductance; K is the segregation coefficient; vn is
the normal growth velocity; ni and nP are the unit
normal vectors pointing into the melt at the interface
and particle’s surface, respectively; GL = aG(L)/Tm and
GS = aG(S)/Tm, where G(q) is the imposed (dimensional)
thermal gradient, and κ is the curvature taken to be
positive when the center of curvature lies in the soild
phase.

The above set of equations (with ε = 0) [12] admits
a base state with a planar interface growing at constant
speed. The determination of the thermal fields in an infi-
nite medium in which a spherical inclusion has been em-
bedded has been carried out [13]. Here, we make use of
the method of images [14] to calculate the thermal fields
in the melt and particle that satisfy the equilibrium tem-
perature condition at the planar interface, equation (3),
and the conditions at the particle’s surface, equation (6).
Then an expression for the thermal field in the solid is de-
rived. This expression must satisfy the temperature con-
dition at the planar interface, equation (3), and must also
support a planar interface growing with constant speed,
equation (4). We have

CB(r, z) = 1, in the melt, (7)

T
(L)
B (r, z) = 1 + GLz + M + U(r, z), in the melt, (8)

T
(S)
B (r, z) = 1 + GSz + M +

U(r, z)
k

, in the solid, (9)

T
(P )
B (r, z) =

3GLz

2 + α
+ 1 + M, in the particle

([(z − H0)2 + r2] ≤ 1). (10)

where

U(r, z) = GL

(
1 − α

2 + α

) ∞∑
n=−∞

n�=0

z + nH0

[(z + nH0)2 + r2]3/2
.

(11)
The plot of the basic profile for the melt’s temperature,
equation (8), is shown in Figure 2. It pertains to an ax-
isymmetric particle of radius a = 10 µm whose center is
on the z-axis and whose separation from the interface is
0.5 µm. It depicts an unstable configuration, wherein the
thermal gradient in the gap is reversed due to the ther-
mally insulating character of the particle. The configura-
tion is, however, stable for the case of a highly conducting
particle.

In order to examine the stability of the base state, we
first superimpose axisymmetric, time-dependent infinites-
imal disturbances θ(q), c and η upon the basic state solu-
tions T

(q)
B , CB, and the planar interface, respectively. We

let
[T (q), C] = [T (q)

B , CB] + ε[θ(q), c], (12)
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Fig. 2. Plot of the basic temperature profile in the melt (Eq. (8)) for a particle of radius a = 10 µm, dimensionless gap thickness
h∞/a = 0.05 and thermal conductance ratios α = 0 (left) and α = 10 (right). Note the reversal in the temperature gradient
in the gap separating the particle from the interface for the insulating particle case. The profile is evaluated using parameter
values for a succinonitrile-acetone system (SCN-ACE) [15,16].

in equations (1–6). The resulting equations are then lin-
earized with respect to the disturbances. The following
perturbed problem is obtained,

∆rθ
(q) +

∂2θ(q)

∂z2
= −λ(q) ∂T

(q)
B

∂z
, (13)

∆rc +
∂2c

∂z2
= 0, (14)

θ(L) = −GLη + σ∆rη − F (r)η + Mc, z = 0, (15)

θ(S) = −GSη + σ∆rη − F (r)
k

η + Mc, z = 0, (16)

∂c

∂z
= K − 1, z = 0, (17)

S ∂η

∂t
= k

∂θ(S)

∂z
− ∂θ(L)

∂z
, (18)

where the small slope approximation has been invoked in
the expression for the curvature, κ ≈ −∆rη, where η is
the perturbation of the planar position, and

F (r) =
∂U

∂z
(r, 0) = 2GL

(
1 − α

2 + α
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n=1

r2 − 2(nH0)2

[r2 + (nH0)2]
5/2

.

(19)
The far field conditions for the perturbations are zero con-
centration and zero thermal gradients in the liquid and
solid phases. The stability problem is solved using the fi-
nite Hankel transform over the range [0, 
] [17]. On using
the approximation F (r) ∼ F (0) as r → 0, we find

θ̂(L) =
[
−

[
GL + σω2 +

2ζ(3)(α − 1)
(2 + α)H3

0

GL

]
η̂

+M

(1 − K)

ω2
J1(ω
) − λ(L)L(ω)

]
e−ωz + λ(L)L(ω),

(20)
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0
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]
η̂

+M
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ω2
J1(ω
) − λ(S)L(ω)

]
eωz + λ(S)L(ω), (21)

L(ω) =

GLJ1(ω
)

ω3
+

1
ω2

∫ �

0

F (r)rJ0(ωr) dr, (22)

where the hat symbol indicates transformed variables, ω
is the wavenumber, Jm is the Bessel function of the first
kind of order m and ζ stands for the zeta function, i.e.
ζ(3) =

∑∞
n=1 n−3.

On imposing the heat balance equation at the inter-
face, equation (18), an evolution equation for the growth
of the perturbation η̂ is obtained. Its solution yields,

η̂(t) =
g(ω)
Λ(ω)

+
[
η̂(0) − g(ω)

Λ(ω)

]
e−Λ(ω)t/S , (23)

where

Λ(ω) =
ω

S

[
G + (1 + k)σω2 +

4ζ(3)(α − 1)GL

(2 + α)H3
0

]
, (24)

g(ω) = M(1 + k)
(1 − K)
J1(ω
)

ωS
− λωL(ω)

S
, (25)

G = kGS + GL is the conductivity weighted thermal gra-
dient, and λ = λ(S) + λ(L). The conditions for marginal
stability are determined by setting the growth rate to zero,
i.e. Λ(ω) = 0. However, when Λ = 0, the term g(ω)/Λ(ω)
in equation (23) is undefined. Therefore, no meaning to
the dispersion relation, Λ(ω) = 0, could exist if ω did
not satisfy the auxiliary equation g(ω) = 0. The ratio,
g′(ω)/Λ′(ω), where ′ = d/dω is however finite. The func-
tion g(ω) is singular at ω = 0 and has infinitely many
zeros ωj , j = 1, 2, 3, . . ., on the positive ω-axis (Fig. 3).
We set ω = ωj in the dispersion relation Λ(ω) = 0 and
solve for H0. The critical value of the particle-interface
separation, dc, is the largest value of H0 and is obtained
by setting ωj equal to the smallest root ω1. We find

dc =
[

4ζ(3)(1 − α)GL

(2 + α) [G + (1 + k)σω2
1 ]

]1/3

. (26)

Equation (26) describes the instability criterion in terms of
dimensionless terms. It implies that for prescribed thermal
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Fig. 3. The small wavenumber behavior (left) and the large wavenumber behavior (right) of the function g(ω) for a system
consisting of SCN-ACE containing silicon-carbide (SiC) particles. The numerical values of the physical constants are [15,16]:
liquidus slope m = −2.8 K/wt%, segregation coefficient K = 1, C∞ = 1.3Wt%, melting point Tm = 328 K, coefficients
of thermal conductivity k(P ) = 85 Wm−1K−1, k(S) = 0.225 Wm−1K−1 and k(L) = 0.223 Wm−1K−1 for the particle, solid
and liquid, respectively; thermal gradients G(S) = 8000 Km−1 and G(L) = 10800 Km−1 in the solid and liquid, respectively;
σsl = 0.009 Jm−2; H0 and � have been arbitrarily chosen to equal 1.1 and 10, respectively; L = 4.6 × 107 Jm−3.
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Fig. 4. (left) Plot of the dimensional critical gap thickness, (dc − 1)a, as function of the dimensional thermal gradient in the
melt, G(L), in unit of kelvin per micrometer for selected values of the thermal conductance ratio α, (right) plot of the critical
gap thickness for 2 insulating particles of radii 5 µm and 10 µm as function of the imposed thermal gradient in the melt G(L).

gradients in the liquid and solid, and for a given thermal
conductance ratio α, instability of the planar interface sets
in whenever the dimensionless distance from the particle’s
center to the interface, measured by H0, equals dc. From
the physical standpoint, the instability is manifested only
for parameter values for which dc exceeds unity and the ex-
pression (1−α)GL is positive. Figure 4 depicts the range of
parameters for which the instability is observable for a sys-
tem consisting of SCN-ACE that is immersed with parti-
cles of different sizes and thermal conductivities. The plot
of the dimensional critical gap thickness, h∞ = (dc − 1)a,
as a function of the thermal gradient in the melt, G(L),
for particles of different thermal conductivities show that
the critical gap thickness (i) increases with G(L), (ii) de-
creases with α, and (iii) particles characterized by high
values of α require high thermal gradients for the insta-
bility to set in. For increasing particle’s size, the critical
gap thickness increases as α and G(L) remain constant.
Furthermore, we note that the onset of the instability,
being of thermal origin, does not depend explicitly on the
concentration. However, the magnitude of dc is affected by
the morphological number due to the dependence of the

auxiliary function g(ω), and thus of the root ω1, on M .
Depending on the physical process under consideration,
the presence or absence of this instability can be imposed
by the selection of an appropriate set of physical parame-
ters as dictated by equation (26) and shown in Figure 4.
The instability put forth in this paper also demonstrates
the influence a tiny impurity in the melt can have on the
morphological stability of the interface.

Ahuja [18] has carried out a detailed experimental
study of the influence of foreign particles on the morphol-
ogy of a slowly growing solid-liquid interface under nor-
mal gravity conditions (see also [19]). These experiments
depict in situ the real time evolution of the solid-liquid
interface shape profile in the vicinity of a single particle.
The sequence of photographs depicting the interaction of
polystyrene particles in SCN with an initially planar solid-
liquid interface, shown on page 101 of reference [18], pro-
vides qualitative confirmation of the features of the insta-
bility put forth in this paper. The quantitative validation
of our prediction requires carefully controlled experiments
in a microgravity environment.
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